Soil quality response to long-term tillage and crop rotation practices
نویسندگان
چکیده
Soil quality is influenced by inherent and anthropogenic factors. This study was conducted to provide multiple groups guidance on how to achieve and maintain improved soil quality/health. Our hypothesis was that tillage intensity was the primary anthropogenic factor degrading soil quality, and our objective was to prove that hypothesis through an intensive 2005 sampling of a central Iowa, USA field study. Chisel plow, disk tillage, moldboard plow, ridge-till and no-till treatments, used for 31 years in a twoyear, corn (Zea mays L.)/soybean [Glycine max (L.) Merr.] (C/S) rotation or for 26 years of continuous corn (CC) production, were evaluated by measuring 23 potential soil quality indicators. Soil samples from 0 to 5and 5 to 15-cm depth increments were collected from 158 loam or clay loam sampling sites throughout the 10-ha study site. Nine of the indicators were evaluated by depth increment using the Soil Management Assessment Framework (SMAF) which has scoring functions for 13 soil biological, chemical, and physical measurements and can be used to compute individual indicator indices and an overall soil quality index (SQI). Water-stable aggregation (WSA), total organic carbon (TOC), microbial biomass carbon (MBC), and potentially mineralizable nitrogen (PMN) were all significantly lower for the 0 to 5-cm and generally lower for 5 to 15-cm increments after long-term moldboard plowing and its associated secondary tillage operations. This presumably reflected greater physical breakup and oxidation of aboveand below-ground plant residues. Bray-P concentrations in moldboard plow plots were also significantly lower at both depth increments. Between soil texture groups, significant differences were found for WSA, Bray-P, TOC and MBC at both depth increments and for both cropping systems. When combined into an overall SQI, both soil texture groups were functioning at 82–85% of their potential at 0–5-cm and at 75% of their potential at the 5–15-cm depth. Our hypothesis that moldboard plowing would have the greatest negative effect on soil quality indicators was verified. Based on this assessment, we recommend that to achieve and maintain good soil health, producers should strive to adopt less aggressive tillage practices. Published by Elsevier B.V. * Corresponding author. Tel.: +1 515 294 3336; fax: +1 5152948125. E-mail addresses: [email protected] (D.L. Karlen), [email protected] (C.A. Cambardella), [email protected] (J.L. Kovar), [email protected] (T.S. Colvin). 1 Retired.
منابع مشابه
The role of soil organic matter in maintaining soil quality in continuous cropping systems
Maintenance and improvement of soil quality in continuous cropping systems is critical to sustaining agricultural productivity and environmental quality for future generations. This review focuses on lessons learned from long-term continuous cropping experiments. Soil organic carbon (SOC) is the most often reported attribute from long-term studies and is chosen as the most important indicator o...
متن کاملEffect of long term no-till and conventional tillage practices on soil quality
Management systems influence soil quality over time. A randomized block design in 2 (tillage system) 3 (crop rotation) factorial arrangement was laid-out to evaluate the impact of tillage and crop rotation (2002–2007) on soil quality. Conventional tillage and No-till were factored into continuous corn, corn–soybean, and corn–soybean–wheat–Cowpea systems. Ten soil cores were collected at 0–7.5, ...
متن کاملCrop rotation and tillage effects on selected soil physical properties of a Typic Haploxerert in an irrigated semi-arid Mediterranean region
Physical, chemical and biological attributes of soil surface are significantly affected by tillage practices and crop rotation. The objective of this study was to determine the short-term (2006-2009) effects of conventional and conservational tillage practices on selected soil physical properties of a heavy clay soil under two wheat-corn and wheatlegume rotation in a semi-arid Mediterranean...
متن کاملBacterial Diversity Under Different Tillage and Crop Rotation Systems in an Oxisol of Southern Brazil
Microbial diversity can be used to assess the impact of agricultural practices on the long-term sustainability of cropping systems. The aim of this study was to investigate changes in soil bacterial diversity as a result of the impact of different soil tillage and crop rotation systems in an oxisol of southern Brazil. Bacterial diversity was examined in the 010 cm layer in two field experiments...
متن کاملCropping systems, tillage and fertilization strategies for durum wheat performance and soil properties
Many sustainable agronomical practices can be adopted to contain environmental risks of crop production and, at the same time, sustain yield and quality. In this framework, the aim of this research was to study the effects of continuous cropping (CC) and crop rotation, tillage and fertilization strategies on durum wheat (Triticum durum Desf.) production. The responses of soil properties we...
متن کاملEffects of agricultural management on soil organic matter and carbon transformation – a review
Soil organic carbon (SOC) is the most often reported attribute and is chosen as the most important indicator of soil quality and agricultural sustainability. In this review, we summarized how cultivation, crop rotation, residue and tillage management, fertilization and monoculture affect soil quality, soil organic matter (SOM) and carbon transformation. The results confirm that SOM is not only ...
متن کامل